
How to load a ferry: a comparison of packing
algorithms for the vehicle ferry industry

C. Bayliss, A. Martinez-Sykora, C. Currie, M. So,
J.A. Bennell

ICCL Southampton October 2017

This work was funded by the EPSRC under grant number EP/N006461/1

Talk overview
1. Description of the vehicle ferry loading problem

2. Previous work: Two packing algorithms

1. Application: Optimal dynamic pricing

3. An algorithm for queue constrained loading

i. Application: Minimise penalties for failing to load vehicles

4. Conclusion

2

Case study

• Red Funnel: regular crossings between
Southampton and the Isle of Wight

• Accommodates private vehicles and commercial
freight vehicles

3

Ferry dimensions

4

Multiple vehicle types
are parked on the

main deck. 2D packing
Is allowed

Lane parking of cars and
motorcycles on the upper
deck and cars only on the

mezzanine decks when they
are in operation

5

• Southampton
terminal

• Parallel queues for
pre-sorting vehicles

Description of the vehicle ferry loading problem
• Vehicles who have purchased tickets arrive at random times before departure

• Upon arrival vehicles are directed to terminal queues according to their type
and dimensions

• Some vehicles are prioritised in the loading process such as those which:

– require unimpeded access to the lifts

– hold a priority boarding pass

– drop trailers

• Minimum parking gaps have to be respected so that passengers can exit the
vehicle deck for the duration of the journey

6

Problem description
• Some vehicles have large turning circles which means that it is best to avoid

parking them in the corner positions either side of the exit

• If mezzanine decks are used some parts of the main deck will have lower
maximum vehicle height constraints

• Some parking positions require a reverse gap to be left so that vehicles are not
jammed on the ferry at exit time

7

TWO PACKING ALGORITHMS

One-dimensional bin packing (1DBP)
Two-dimension packing heuristic (2DH)

8

One-dimensional bin packing (1DBP)
• Each deck consists of a set of lanes (bins)

• Each bin has a width, height and length (constraints)

• Maximise the value of the packed vehicles

• 	ݔܽܯ ∑ ∑ ∑ ݔݏ
ೕ
ୀଵ

ୀଵ

ூ
ୀଵ

 ݔ ݀				∀݅ ∈ ܫ
∈ೕ∈

݈ݔ መ݈				∀݆ ∈ ,ܬ 	 ∀݇ ∈ ܬ
∈ூ
ݔ ∈ Գ				∀ሼ∀݅ ∈ ,ܫ 	 ∀݆ ∈ ,ܬ 	 ∀݇ ∈ ሽܬ 9

One-dimensional bin packing (1DBP)
• Extended to allow:

– for vehicles parked across adjacent lanes

– for variable lane sizes

10

Two-dimensional packing heuristic (2DH)
• This heuristic is designed for use in a loading simulator developed in

collaboration with Red Funnel and accounts the real world constraints

– Large vehicle manoeuvrability; lift access; lowerable mezzanine decks; drop
trailers and also reverse gaps

• The loading simulator follows the procedure implemented in the real world

1. Load cars and motorcycles onto the car deck and mezzanine decks if used

2. Priority vehicle types are then loaded onto the main deck

3. The remaining vehicles are loaded onto the main deck using the two-
dimensional packing heuristic

11

Two-dimensional packing heuristic (2DH)
• A vehicle sliding procedure was used to track the remaining vehicle

positions and to calculate efficiency attributes for those positions

• Loading decisions where chosen as those which maximised a weighted sum of
efficiency attribute scores, simulated annealing was used to set the attribute
weights to maximise packing efficiency

– max

∑ ݓ ܽ

ୀଵ

12

Optimal dynamic pricing problem
Objective: derive a dynamic pricing policy that maximises the expected revenue
from the sale of vehicle tickets on a ferry

• Constraint: Limited capacity which depends on packing efficiency

• Customers

– Arrive at random times during the selling season (beginning 6 months
before departure)

– Have a maximum willingness-to-pay is dependent on time until departure
and their vehicle type

– And, their vehicles vary in size

General framework for integrating optimal packing and
pricing

14

Pricing
algorithm

1. Dynamic
programming

2. Approximate
dynamic
programming

Packing
algorithm

1. 1D Bin Packing
2. 2D Packing

Heuristic

Capacity model

States capturing the
sold/remaining
capacity

• The optimal dynamic pricing policy can be calculated using dynamic programming
• The states capture remaining capacity based on optimal packing of the accepted vehicles

• Submitted:
• 1. Martinez-Sykora et al. 2017, Trans Res B
• 2. Bayliss et al. 2017, EJOR

QUEUE CONSTRAINED VEHICLE
FERRY LOADING

Sequential Guillotine Cut Knapsack (SGCKS)

15

Queue constraints can make a packing problem infeasible

16

Not loaded∴
Financial penalty

Arrival Scenario 2

Arrival Scenario 1

Ferry
Entrance Vehicle queue

This problem can occur whenever it is not possible to keep all vehicle types in separate queues

Sequential Guillotine-Cut-KnapSack packing approach (SGCKS)

17

• Implementable and intuitive

• The yard (queueing) policy and packing solutions are each encoded as integer strings

• In both cases integers encode size and orientation information

• Queues are built by applying the yard policy during the vehicle arrival process

• Packing solutions are constructed by performing a sequence of horizontal and
vertical cuts to the remaining ferry space, each cut-off space is packed with vehicles to
create a row or a column of vehicles

• Packing solutions obey queue order constraints as at each stage vehicles can only
be loaded if they are currently at the front of a queue

Yard policy solution encoding

18

Terminal

,ݐ ,ିଵݐ ⋯ ,ଶݐ ,ଵݐ

The queue orders are dependent upon random
arrival times and a lane allocation policy

Quantiles
Strip type small middle large

Width 0 1 2
Length 3 4 5

Example solution={2,5,3}

2=Vehicles with a large width

5=Vehicles with a large length

3=Vehicles with a small length

SGCKS packing solution encoding

19

Ferry
Terminal E

ntrance

Quantiles
Strip type small middle large

Bottom row 0 3 6
Left column 1 4 7
Right column 2 5 8

• 3 cut orientations
• 3 rectangle size quantiles

Example solution={3,2,7,0,6}
3=bottom row, medium length vehicles2=right column, small width vehicles7=left column, large width vehicles0=bottom row, small length vehicles

SGCKS relaxation (General Packing or GP)
• Instead of strictly obeying the vertical and horizontal cuts use the nearest corner

positions, this recovers wasted space within previous cuts

20

Utilisations and optimality gaps for SGCKS approaches

21

Queue constrained packing revenue problem

Objective: maximise revenue from the sold vehicle tickets minus penalties for failing
to load any vehicles

• Penalty: refund times two (refund plus compensation)

• Decisions:

– Yard policy for arrival vehicles

– Commit to loading a subset of vehicles, as to rule out compensation
payments to those we refund pre-emptively

• Expected revenue=Committed vehicle revenue-2(revenue of non-loaded vehicles)

Solution strategy
• Given a set of random arrival scenarios S

• We propose finding a yard policy ࢟ and a set of packing solutions ࡼ, one for each
arrival scenario such that the revenue value of the intersection vehicle
mix is maximised

• The intersection vehicle mix is that which we commit to loading

• A risk parameter ࢝ is introduced, we then maximise the revenue value of the
intersection of ݓ out of |ܵ| vehicles mixes

23

Maximise the intersection vehicle mix

24

Tickets
sold={3,3}

Arrival scenario 1 packing solution Arrival scenario 2 packing solution

{1,2}: Simple intersection (just take the minimum of each vehicle type)
{2,2}: Intersection after accounting for nested vehicle sizes

Nested vehicle size

Given the possible arrival scenarios we should commit to loading {2,2}

2 small
vehicles
left off

1 large vehicle
left off

Formulation
• max

௬,
∑ ܴ ݉∈ -Revenue value of committed vehicle mix

• Subject to

1. ݉ ൌ ⋂ ∗ݒ
∈ -m is the intersection (committed) vehicle mix

2. ܤ ⊂ ܵ -over a subset of the arrival scenarios

3. ܤ ൌ ݓ -the size of the subset (risk parameter)

4. ௦ݒ ← ݃ ,௦ ݂ ,ݕ ݏ ݏ∀			 ∈ ܵ -the SGCKS methodology maps y, P to loaded
vehicle mixes

25

Iterative solution approach
• An iterative metaheuristic alternates between packing and yard policy

optimisation

• Fix one optimise the other in each iteration

– Packing iterations evaluate the impact of forcing particular arrival scenarios
and their candidate packing solutions as elements of B

– Yard iterations evaluate candidate yard policies in the effect on the revenue
value of the intersection* vehicle mix

• Due to ݒ௦ ← ݃ ,௦ ݂ ,ݕ ݏ of SGCKS searching y also searches P

26

The effect of |B| and |S|

27

• For this fully nested 30 vehicle category example revenue after penalties was
maximised by setting |S| and |B| as high as possible

• When there is no nested vehicle type structure moderate |S| and |B| values
prevent us from committing to over conservative vehicle mixes

Comparison of packing algorithms
Constraint/feature 1DBP 2DH SGCKS Sim‐SGCKS
Parking gaps 0.5 1 0.5 1
Priority vehicles 0 1 0 1
Height restrictions 1 1 1 1
Reverse gaps 0 1 0 1
Mezzanine decks 0 1 0 1
Turning circles 0 1 0 1
Irregular ferry shape 1 1 1 1
Random arrival/yard
policy 0 0 1WIP
Queue orders respected 0 0 1WIP
Two‐dimensional
packing 0.5 1 1 1
Optimised 1 0.5 0.5 0.5 28

Conclusion
• Our research project in collaboration with the Red Funnel vehicle ferry company

has given rise to three different packing models

• The initial 1DBP formulation formed the basis of an analytical formulation of
optimal dynamic pricing integrated with optimal packing

• The 2DH method applied the integrated pricing and packing framework in a
larger scale and 2D packing setting with heuristics and approximate dynamic
programming methods

• The SGCKS methods were developed to account for the effects of random
arrivals and queue constrained packing

• Implementing the SGCKS approach within the loading simulator brought
everything together in a training tool for loading personnel 29

SGCKS viewed as functions
• The SGCKS packing methodology can be viewed as follows:

– Queueing process:

• ݍ ← ݂ ,ݕ ݏ that is a yard policy ݕ and an arrival scenario ݏ map to a set of
vehicle queues ݍ

– Packing process:

• ݒ ← ݃ , ݍ this a SGCKS packing solution string and a set of vehicle
queues ݍ maps to a vector of the loaded vehicle types of each type

30

Three packing algorithms overview
• One-dimensional bin packing

– Lane parking model, each lane is a bin

– Can be optimised efficiently via Integer Programming techniques

• Two-dimension packing heuristic

– Simulation of case study with real world constraints

– Parking decisions determined by weighted sum of efficiency attribute
measurements, weights optimised by simulated annealing

• Sequential Guillotine Cut Knapsack

– Guillotine cuts create horizontal/vertical bins

– The bins are packed in cut order whilst respecting queue order constraints
31

Variable lanes 1DBP formulation (Exact)

Set of lane types
(bins)

݆ ∈ ܬ

Set of vehicle
types

݅ ∈ ܫ

Ferry

መ݈

݈

݀ ൌ ଵ,ଵݕ1,1,1,1,1 ൌ 1 ଶ,ଵݕ ൌ 1 ଷ,ଵݕ ൌ 0

ଵ,ଵ,ଵݔ ൌ 1

ଶ,ଵ,ଵݔ ൌ 1

ଷ,ଶ,ଵݔ ൌ 1

ସ,ଶ,ଵݔ ൌ 1

ହ,ଶ,ଵݔ ൌ 1

Lower bounds for utilisation
• LB given by the area of the rectangles/bin – Usually very poor

• Simple DFF provide usually poor LB

• We propose to solve two 1DBPPs to improve the lower bound given by the area of
the rectangles.

33

Steps:
1- Solve 1dbpp (horizontally) – LB1
2- Solve 1dbpp (vertically) – LB2
3- LB=LB1+LB2-Interection
4- Iteratively reduce the number of
vehicles of each type to update LB

Lower bounds for utilisation – 1DBPP

34

x5 x10 x30 x8 x12

ݔݓ݊݅ܯ
∈

 ݀ݔ
∈

 ܦ

Where ݔ represents the number
of times pattern ݆ is used in the
solution

Master Problem:

Waste of pattern ݆ Minimum waste we generate horizontally

Sub problem:

ሺܽ݊݅ܯ ݈ሻݕ
∈ூ

݈ݕ
∈ூ

 ܮ

Where ݕ represents the number
of times piece ݅ is used in the
pattern, ܽ the dual reduced
costs, ݈ the length of rectangle ݅
and L the length of the bin.

Lower bounds for utilisation – 1DBPP

35

We repeat the same procedure
with the width of the pieces

and the bin – LB2

1D WASTE

?

We look into the original pieces

ݓ - real waste in the 2D problem

Demo
• Sim-SGCKS

– The SGCKS-GP method implemented within the loading simulator (but
currently without yard policy WIP)

36

Selling Tickets

Start of
selling
season

Departure
iDiscrete
time

At most one
customer arrival
per time period

Optimising the loading rules
• The loading algorithm sequentially selects where it would load each vehicle

type and then selects which vehicle type to load next

• For each Loading decision a number of efficiency based attributes are
calculated

• Example attributes:

– Distance from the exit of the ferry (bottom)

– Distance from the side of the ferry (left)

– Tightness (vehicle width/parking position width)

– Parking loss (space lost due to staggered parking (gaps))

– Bottom overlap adjacency ratio (mouth full) 38

Optimising the loading rules (continued)
• Loading decisions ሺ݀ሻ are scored by a weighted sum of the attribute

measurements and the decision with the highest score is selected

– Loading decision ൌ max
ௗ∈ௗ௦௦

∑ ܽௗ௧௧௨௧௦ݓ
ୀଵ

• The simulated annealing algorithm optimises the weights ࢝ to achieve
efficient loading

• The fitness function used by the simulated annealing algorithm is:

• :ݔܽܯ ݈ܸ݆ܾܽ	 ൌ (on-line remaining space)
െܯଵ(number of wasted gaps)
െܯଶ(area of vehicles that do not fit)

39

Applications of each algorithm

• 1DBP: used to identify all possible packing solutions as states in a dynamic programming
formulation of optimal dynamic pricing in the vehicle ferry industry. Martinez-Sykora
et al. 2017 submitted TRANS RES Part B.

• 2DH: used to implement a 2D packing formulation of the dynamic pricing formulation
for larger ferries and more vehicle types by using the simulator to map vehicle mix
states to lower dimension remaining space states. Bayliss et al. 2017 submitted EJOR.

• SGCKS: used in method to determine vehicle mixes that can be loaded reliably under
vehicle arrival time uncertainty and queue constrained packing. Bayliss et al. ESICUP
2017.

• Sim-SGCKS: Red Funnel hosted a workshop demonstration of this implemented as a
training tool for loading personnel, the tool is being developed further based on their
feedback. 40

Results comparing the packing algorithms
• We compared 1DBP and 2DH dynamic pricing approaches in 1D packing

framework and demonstrated the potential value of full 2D packing solutions

• We compared the SGCKS based approached with upper bounds derived from a
relaxed packing formulation and with results from the bottom-left heuristic

41

Iterative metaheuristic algorithm

42

Queue constrained packing under arrival uncertainty
• ܵ: set of arrival scenarios

• S: an arrival scenario is defined as

• ݉௩: number of vehicles of type ݒ to commit to loading

• B: subset of arrival scenarios

• Y: yard policy

• P: set of packing solution strings

43

Merged lanes formulation
• Sometimes wide vehicles have to be parked across

two lanes, requires the following constraints

• ∑ ∑ ,,∈ೕݔ ∑ ,,ᇲᇲ∈ೕݖ
ᇲ∈ ݀				∀݅ ∈ ܫ

• ,ݕܯ ݅∀				,,ݔ ∈ ,ܫ 	 ∀݆ ∈ ,ܬ 	 ∀݇ ∈ ᇱܬ	\ܬ

• ,ݕܯ ,ᇲ,ᇲݔ ݅∀				,,ݖ ∈ ,ܫ 	 ∀݆ ∈ ,ܬ 	 ∀݇ ∈ ᇱܬ

• ∑ ݈ݔ,, መ݈				∀݆ ∈ ,ܬ 	 ∀݇ ∈ ∈ூܬ

• ∑ ݈ ,ᇲ,ᇲݔ ,,ݖ መ݈				∀݆ ∈ ,ܬ 	 ∀݇ ∈ ∈ூܬ

44

Sim-SGCKS
• A slide on this

45

Deck configurations and demand scenarios

46
High car demand
2 Mezzanine decks

Medium demand
1 Mezzanine deck

High freight demand
0 Mezzanine decks

1DBP and 2DH selling season state definitions

47

• 1‐d bin packing
model (optimal lane
parking)

• State=count of
vehicles of each
type

• 1‐dimension per
vehicle type

• Tickets sold state
definition

• 2‐d packing heuristic
(ignores lanes)

• State=remaining deck area
per deck region

• 1‐dimension per deck
region

• Remaining space state
definition

A

1DBP 2DH

݁ݐܽݐݏ ൌ 3,2,1,1,4 ݁ݐܽݐݏ ൌ ܣ ൌ 950.8, ݁ݑ݈ܽݒ	݊݅ݐ݅ݏ݊ܽݎݐ		 ൌ 26.2
݂ 3,2,1,1,4 , 0 ൌ 3,2,1,1,4 1,0,0,0,0 ൌ ሼ4,2,1,1,4ሽ ݂ 950.8, 0 ൌ 950.8 െ 26.2 ൌ 924.6

Transition functions for one vehicle type 0 sale

General framework for integrating packing and pricing
• Dynamic pricing formulation

– The optimal dynamic pricing look-up-table policy can be derived by
computing the Bellman equations by backwards recursion

– In each state at each time 3 events can occur

1. No customers arrive
2. A customer arrives but does not purchase a ticket
3. A customer arrives and purchases a ticket

48

௧ܸሺݏሻ ൌ max
∈

ߣ௧, ߙ ݅, , ݐ ௧ܸିଵ	ሺ݂ሺݏ, ݅ሻሻ 1 െ ߙ ݅, , ݐ ௧ܸିଵሺݏሻ
∈ூ

 ௧,ߣ ௧ܸିଵሺݏሻ
(1)(2)(3)

1DBP vs 2DH and the Benefit of 2-d packing

discretizations

40

60

80

100

120

Comparison of average revenue results for the exact and simulation based models for
various vehicle type discretization schemes

2 vehicle types 3 vehicle types 4 vehicle types 5 vehicle types

exact
exact expected revenue
1-d bin packing simheuristic
2-d packing heuristic simheuristic

49

3,
11

5,
11

7,
11

9,
11

3,
5,

11

3,
7,

11

3,
9,

11

5,
7,

11

5,
9,

11

7,
9,

11

3,
5,

7,
11

3,
5,

9,
11

3,
7,

9,
11

5,
7,

9,
11

3,
5,

7,
9,

11

av
er

ag
e

re
ve

nu
e

Two decision problems
i. Optimal dynamic pricing in the vehicle ferry industry

ii. Queue constrained packing under arrival uncertainty

50

Intersection of vehicle mixes

51

On-line remaining space and parking position
calculation

52

Available parking
positions

Remaining area which is
used to map vehicle mix
state to remaining space
state

ଵܣ

ଶܣ

ଷܣ

Yard policy solution encoding

53

Terminal

,ݐ ,ିଵݐ ⋯ ,ଶݐ ,ଵݐ

The queue orders are dependent upon random
arrival times and a lane allocation policy

Quantiles
Strip type small middle large

Width 0 1 2
Length 3 4 5

Example solution={2,5,3}

Yard policy
• Each lane is devoted to vehicles of a target width or

a target length
• On arrival vehicles are allocated to the closest

matching lane
• Ties can be broken based on:

• queue length
• number of different vehicle types in queues

2=Vehicles with a large width

5=Vehicles with a large length

3=Vehicles with a small length

